Å

∛Saral

Revision Notes

Class - 10 Mathematics

Chapter 11 - Constructions

Division of a Line Segment :

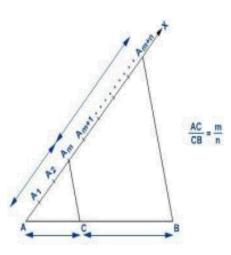
To divide a line segment internally in a given ratio mn, where both m and n are **positive integers**.

Steps:

Step 1: Draw a line segment AB of a given length using a ruler.

Step 2: Draw any ray AX making an acute angle with AB.

Step 3: Along AX mark off (m + n) points, namely


 $A_1, A_2, \dots, A_m, A_{m+1}, \dots A_{m+n}$

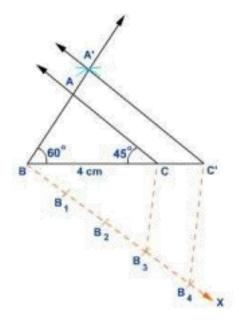
Step 4: Join B to A_{m+n}

Step 5: Through the point A_m draw a line parallel to $A_{m+n}B$ at A_m . Let this line meet AB at 'C' which divides AB internally in the ratio mn.

Proof:

In $\triangle ABA_{m+n}$, CA_m is parallel to BA_{m+n}. By basic proportionality theorem, we get, Here 'C' divides AB internally in the ratio mn.

Class 10 Maths Revision Notes chap. 11 www.esaral.com


Å

∛Saral

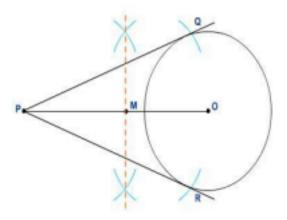
To Construct a Triangle Similar To a Given Triangle as Per the Given Scale Factor:

Construct a $\triangle ABC$ in which BC=4cm, $\angle B = 60^{\circ}$ and $\angle C = 45^{\circ}$. Also, construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of

 $\triangle ABC$

Steps of construction:

Step 1: Construct a triangle ABC with the given data that are BC=4cm, $\angle B = 60^{\circ}$ and $\angle C = 45^{\circ}$ Step 2: Construct an acute angle CBX downwards. Step 3: On BX, make four equal parts and mark them as B₁, B₂, B₃, B₄. Step 4: Join 'C' to B₃ and draw a line through B₄ parallel to B₃C, intersecting the extended line segment BC at C. Step 5: In the same way draw CA' parallel to CA. Thus $\triangle ABC$ is the required triangle similar to $\triangle ABC$ whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle ABC$.


Construction of Tangents to a Circle:

To construct the tangents to a circle from a point outside it **Given:** A circle with center 'O' and a point ' P ' outside it **Required:** To construct the tangents to the circle from P.

Class 10 Maths Revision Notes chap. 11 www.esaral.com

<mark>∛</mark>Saral

Å

Steps of construction:

Step 1: Draw a circle with center 'O'

Step 2: Join OP.

Step 3: Draw the perpendicular bisector OP. It meets OP at 'M'.

Step 4: Taking 'M ' as center and **OM** as radius draw arcs which cut the circle with center 'O' at two points. Name them as Q and R .

Step 5: Join PQ and PR.

Step 6: PQ and PR are the required tangents to the circle with center 'O' from an external point 'P'.

Note:

We can prove that the length of PQ and PR are equal.