Revision Notes

Class - 10 Mathematics

Chapter 11 - Constructions

Division of a Line Segment :

To divide a line segment internally in a given ratio mm , where both m and n are positive integers.

Steps:

Step 1: Draw a line segment AB of a given length using a ruler.
Step 2: Draw any ray AX making an acute angle with AB.
Step 3: Along $A X$ mark off $(m+n)$ points, namely
$A_{1}, A_{2}, \ldots, A_{m}, A_{m+1}, \ldots A_{m+n}$
Step 4: Join B to A_{m+n}
Step 5: Through the point A_{m} draw a line parallel to $A_{m+n} B$ at A_{m}. Let this line meet $A B$ at ' C ' which divides $A B$ internally in the ratio mn.

Proof:

In $\triangle \mathrm{ABA}_{m+n}, \mathrm{CA}_{\mathrm{m}}$ is parallel to BA_{m+n}.
By basic proportionality theorem, we get,
Here ' C ' divides AB internally in the ratio mn.

To Construct a Triangle Similar To a Given Triangle as Per the Given Scale Factor:

Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=4 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}$ and $\angle \mathrm{C}=45^{\circ}$. Also, construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle \mathrm{ABC}$.

Steps of construction:

Step 1: Construct a triangle ABC with the given data that are $\mathrm{BC}=4 \mathrm{~cm}$, $\angle \mathrm{B}=60^{\circ}$ and $\angle \mathrm{C}=45^{\circ}$
Step 2: Construct an acute angle CBX downwards.
Step 3: On BX, make four equal parts and mark them as $B_{1}, B_{2}, B_{3}, B_{4}$.
Step 4: Join ' C ' to B_{3} and draw a line through B_{4} parallel to $\mathrm{B}_{3} \mathrm{C}$,
intersecting the extended line segment BC at C .
Step 5: In the same way draw CA' parallel to CA. Thus $\triangle A B C$ is the required triangle similar to $\triangle \mathrm{ABC}$ whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle \mathrm{ABC}$.

Construction of Tangents to a Circle:

To construct the tangents to a circle from a point outside it
Given: A circle with center ' O ' and a point ' P ' outside it
Required: To construct the tangents to the circle from P .

Steps of construction:

Step 1: Draw a circle with center ' \mathbf{O}^{\prime}
Step 2: Join OP.
Step 3: Draw the perpendicular bisector OP. It meets OP at ' M '.
Step 4: Taking ' M ' as center and OM as radius draw arcs which cut the circle with center 'O' at two points. Name them as Q and R .
Step 5: Join PQ and PR.
Step 6: $P Q$ and $P R$ are the required tangents to the circle with center ' O ' from an external point ' P '.

Note:
We can prove that the length of PQ and PR are equal.

